Fully automated segmentation of the cervical cord from T1-weighted MRI using PropSeg: Application to multiple sclerosis
نویسندگان
چکیده
Spinal cord (SC) atrophy, i.e. a reduction in the SC cross-sectional area (CSA) over time, can be measured by means of image segmentation using magnetic resonance imaging (MRI). However, segmentation methods have been limited by factors relating to reproducibility or sensitivity to change. The purpose of this study was to evaluate a fully automated SC segmentation method (PropSeg), and compare this to a semi-automated active surface (AS) method, in healthy controls (HC) and people with multiple sclerosis (MS). MRI data from 120 people were retrospectively analysed; 26 HC, 21 with clinically isolated syndrome, 26 relapsing remitting MS, 26 primary and 21 secondary progressive MS. MRI data from 40 people returning after one year were also analysed. CSA measurements were obtained within the cervical SC. Reproducibility of the measurements was assessed using the intraclass correlation coefficient (ICC). A comparison between mean CSA changes obtained with the two methods over time was performed using multivariate structural equation regression models. Associations between CSA measures and clinical scores were investigated using linear regression models. Compared to the AS method, the reproducibility of CSA measurements obtained with PropSeg was high, both in patients and in HC, with ICC > 0.98 in all cases. There was no significant difference between PropSeg and AS in terms of detecting change over time. Furthermore, PropSeg provided measures that correlated with physical disability, similar to the AS method. PropSeg is a time-efficient and reliable segmentation method, which requires no manual intervention, and may facilitate large multi-centre neuroprotective trials in progressive MS.
منابع مشابه
P9: Cervical Spinal Cord Extraction in Patients with Multiple Sclerosis Using Magnetic Resonance Imaging for Measuring Cross-Sectional Area
Multiple sclerosis (MS) refers to the lesions that accumulate in the brain and spinal cord. Magnetic resonance imaging (MRI) is the most sensitive and versatile modality used to show changes in the tissues over time. There has been significant interest in evaluating the relationship between the brain atrophy and disease progression rather than the spinal cord atrophy. The cervical spinal cord h...
متن کاملAutomatic magnetic resonance spinal cord segmentation with topology constraints for variable fields of view
Spinal cord segmentation is an important step in the analysis of neurological diseases such as multiple sclerosis. Several studies have shown correlations between disease progression and metrics relating to spinal cord atrophy and shape changes. Current practices primarily involve segmenting the spinal cord manually or semi-automatically, which can be inconsistent and time-consuming for large d...
متن کاملA Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis
Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets.Objective: We classified patients with relapsing-r...
متن کاملT1- vs. T2-based MRI measures of spinal cord volume in healthy subjects and patients with multiple sclerosis
BACKGROUND The reliable and efficient measurement of spinal cord atrophy is of growing interest in monitoring disease progression in multiple sclerosis (MS). METHODS We compared T1- and T2-weighted MRI for measuring cervical spinal cord volume in 31 patients with MS and 18 age-matched controls (NC) from T1-weighted gradient recalled echo and T2-weighted fast spin-echo 1.5 T axial acquisitions...
متن کاملRapid semi-automatic segmentation of the spinal cord from magnetic resonance images: Application in multiple sclerosis
A new semi-automatic method for segmenting the spinal cord from MR images is presented. The method is based on an active surface (AS) model of the cord surface, with intrinsic smoothness constraints. The model is initialized by the user marking the approximate cord center-line on a few representative slices, and the compact surface parametrization results in a rapid segmentation, taking on the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage: Clinical
دوره 10 شماره
صفحات -
تاریخ انتشار 2016